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Magnetoresistance calculations for a two-dimensional electron gas with unilateral short-period
strong modulation
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Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka´ 10, 16253 Praha, Czech Republic

Rainer A. Deutschmann†

Walter Schottky Institut, Technische Universita¨t München, D–85748 Garching, Germany
~Received 28 May 2002; published 21 November 2002!

The linear response theory is used to describe magnetoresistance oscillations of short-period unilateral
superlattices with strong modulation~or alternatively arrays of coupled quantum wires!. The semiclassical
description of this system fails for strong magnetic fields~magnetic breakdown! and we employ a simple fully
quantum-mechanical tight-binding model~owing to the fact that coupling between two neighboring wires is
much smaller than the height of barrier between them! in conjunction with Kubo’s formula instead. The
resulting magnetoresistance data nicely compare to the experiments while the model opens good intuitive
insight into the effects taking place in the system.
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I. INTRODUCTION

Transport properties of two-dimensional electron syste
~2DES! with unidirectional periodical modulation have bee
studied for more than ten years. Lot of attention has b
paid to the case of weak modulation by electric and magn
fields. Such a system was first prepared by means of h
graphic techniques by Weisset al.1 and showed the commen
surability oscillations in magnetoresistance for low magne
fields and Shubnikov–de Haas~SdH! oscillations for high
magnetic fields. Periodicity of the former ones can be w
understood even in a semiclassical~SC! concept considering
the drift of the cyclotron orbit center in crossed electric a
magnetic fields. This approach can also give some quan
tive predictions for the magnetoresistance.2 An alternative
formulation of the SC approach3 relying on the breakdown
probability ~tunneling between two closed SC orbits! oscil-
lations is also possible. Gerhardtset al.4 diagonalised the
quantum-mechanical~QM! Hamiltonian ~and employed the
Kubo formula to compute conductivity! finding the oscillat-
ing width of Landau bands~Landau levels broadened by th
weak modulation into narrow cosine–like bands! to be the
basic cause of the effect within the QM picture. QM a
proach was also applied by Vasilopouloset al.5

The SdH oscillations follow naturally from the QM con
cept owing to the quantization of free electron motion
magnetic fields@Landau levels~LL’s !#. This quantization has
to be ad hoc assumed in the SC picture but once this
accepted, the SC theory provides a sufficient descriptio
this case.

Experiments on gated structures manufactured by lit
graphic techniques performed by Betonet al.6 allowed for
investigating effects of stronger modulation. Compared
the previously mentioned experiments, the major effect w
the quenching of the commensurability oscillations. The
approach2 was applicable again,6 although quantum
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calculations7 were in better agreement with experimen
Later, the SC theories have been extended in order to acc
for anisotropic scattering8 and for modulation by magnetic
field9,10 ~extending the older works2,11!. For QM approach to
modulation by magnetic field see e.g.,.12 All together, the SC
approach proved itself to be suitable in these cases.

More recently, samples with modulation potential due
MBE-grown structure were prepared~using cleaved edge
overgrowth technique! by Deutschmannet al.13 In contrast to
all former experiments, the modulation periodd515 nm was
shorter by almost one order of magnitude. Owing to this f
and also due to strong modulation~Fermi energyEF.4utu
!V0, wheret is the hopping integral between ground sta
in two neighboring wells of the potential modulation andV0

is the height of barriers30 between those wells, see Fig. 1!,
the lowest modulation miniband is well separated fro
higher minibands @the condition for this is d
&A3h2/(2utum)]. The magnetoresistance oscillations me
sured when the Fermi level lies between the modulat
bands can be explained by no semiclassical model un
tunneling between open trajectories is assumed~the break-
down formalism3 mentioned above is necessary at th
place!. It is thus appropriate to revert to a quantum
mechanical description. Moreover, the miniband structure
simple now and allows thus for a good insight into the ph
ics both on the SC and quantum-mechanical level.

The cleaved edge overgrowth technique is not the o
way to produce unilaterally modulated 2DES with sho
modulation period. Also recently, Iyeet al.14 reported on
magnetoresistance measurements on samples with mo
tion period as short as 12 nm. In these experiments, 2DE
located near to a GaAs/AlAs interface where there are re
lar steps on the GaAs~775!B surface@which is slightly tilted
to the~111! plane#. The effective potential modulation of th
2DES due to the steps seems to be weak and thus our m
©2002 The American Physical Society18-1
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FIG. 1. Right: 2DES with lateral periodical modulation and the effectively two-point-contact geometry. Alternatively, this m
conceived as an array of coupled quantum wires~parallel to thex axis!. The ‘‘wires’’ ~layers of GaAs! and the ‘‘barriers’’~layers of
Al xGa12xAs, x50.32) were 11.9 and 3.1 nm thick in the experiments~Ref. 13! we refer to. Owing to the height of the ‘‘barriers’’ the
coupling between wires is small (EF.4utu!V0) and a tight-binding model is thus appropriate. Left: Zero field band structure~alongky)
calculated by Kronig-Penney model. We keep only the lowest band~thick line! in our calculations and we set 4utu equal to the width of this
band.
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is not relevant for these experiments. Other experime
were presented by Chowdhuryet al.15 who fabricated bilat-
erally modulated systems with modulation periods arou
100 nm using electron beam lithography followed by sh
low wet etching.

The structure of this paper is the following. At the begi
ning we will review the semiclassical approach as a favo
tool used to describe magnetotransport experiments. We
also compare the zero-field density of states~DOS! with the
BÞ0 DOS computed in Sec. II. It will give us illustrativ
examples of a situation when the SC theory is expected t
successful and of another situation when it should fail. T
condition of applicability of the SC approach will be show
to be\veff!2utu whereasveff5eB/meff5eB/Ammy.

In the second part~Sec. II! we will describe a fully
quantum-mechanical one-particle model and demonst
that the gaps in the DOS emerging from this model coinc
with extrema in the measured magnetoresistance. Then
will employ the linear response theory~Sec. III! in order to
calculate the magnetoresistance and we will compare it w
the experiments.

A. The system

In this paper, we refer to experiments carried out
GaAlAs/GaAs structures first reported in Ref. 13, see a
more detailed description in Refs. 16,17. These are supe
tices with strong unilateral short-period~electric-field!
modulation. The substantial difference to previous stud
~see the Introduction! is the shortness of the modulation p
riod: only the lowest modulation band~and not many of
them! is occupied under those circumstances which ma
the usage of quantum mechanics inevitable. Moreover,
sence of the higher modulation bands makes the model
transparent. We concentrate on magnetoresistance mea
ments at different concentrations of electrons~which could
be varied by a gate voltage over the range 0.5–
31011 cm22). The system is sketched in Fig. 1.

The miniband structure in zero magnetic field calcula
within the Kronig-Penney model~see also Fig. 1! can be well
approximated by
20531
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E~kx ,ky!5
\2kx

2

2m
22utucoskyd ~1!

with 4utu'3.8 meV andm equal to the effective mass o
electrons in GaAs. The next modulation band is well abo
the Fermi levelEF for all accessible concentrations. The fir
and the second modulation band are separated by'60 meV
according to the Kronig-Penney model.

If the Fermi level lies near the bottom of the band
(22utu,EF!2utu), the system resembles a free 2DES~i.e.,
paraboloidal spectrum with modified effective mass in t
modulation directionmy5\2/2utud2'2.7m). If the Fermi
level lies high above the modulation band edge (EF@2utu),
the dispersion relation is similar to the one of an array
separated one-dimensional wires~i.e., parabolic acrosskx
and nearly constant alongky) while the deviation fromE
5\2kx

2/2m reflects the coupling of wires.

B. Semiclassical approach

The physical quantity of central importance in transp
theories is the density of statesg(E) ~DOS! at the Fermi
level EF . It is known that its structure reflects features of t
resistance~both as a function ofB, for instance! but the
relation between these two quantities is not simple.

The SC theory attempts to explain the behavior of el
trons subject to a magnetic field in terms of the zero-fi
Fermi surfaces. We demonstrate that the zero-field DOS
an extra quantization condition is a fairly good approxim
tion to the realistic DOS~computed by our model, from Sec
II ! at low magnetic fields (\veff!2utu). However, there is a
drastic difference between these two densities of states
high magnetic fields indicating failure of the SC theory~see
Fig. 3!.

Let us briefly review the SC approach suggested by L
shitz and Onsager~see, e.g., Ref. 18!. We construct the Ferm
contour EF5E(kx ,ky) for a given Fermi level. The state
ments are that~1! the Fermi contour rotated by 90° an
scaled byl 25\/eB corresponds to the real-space trajecto
of an electron~see Fig. 2! and ~2! if the contour is closed,
then it is allowed only if the magnetic flux passing throu
8-2
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MAGNETORESISTANCE CALCULATIONS FOR A TWO- . . . PHYSICAL REVIEW B 66, 205318 ~2002!
the area enclosed by the real-space trajectory is an int
multiple of the magnetic flux quantumF05h/e. In the QM
picture, this quantization condition corresponds to the sit
tion whenEF5\veff(n1 1

2 ) for some integern, i.e., when
the nth LL passes through the Fermi level.

So as to be able to compare the SC and QM predicti
let us now examine the densities of states. Note that by c
paring the zero-field DOS of our system~for E!2utu, i.e., in
the region of quantized orbits and 2D-like behavior! with the
zero-field DOS of a free 2DES@g(E)52meff /p\2 including
spin# we may deduce the modulation-influenced effect
massmeff . This in turn determines the quantization conditi
EF5\veff(n1 1

2 ) and thus all SC predictions can be ma
using the zero-field DOS of the system only. Based on
spectrum@Eq. ~1!# we can compute the zero-field DOS an
lytically

g0~E!55
4

~2p!2
A 2m

\2utud2

1

Aj
K~1/Aj!,E.2utu,

4

~2p!2
A 2m

\2utud2
K~Aj!,22utu,E,2utu,

~2!

where

j5
11E/2utu

2

including the factor of 2 for spin~the dotted line in Fig. 3!. K
is the full elliptic function K(k)5F((p/2) ,k)5*0

p/2(1
2k2sin2w)21/2dw, we recall19 that K(0)5p/2, K(1)5`.

Let us focus on the weak-field case first (\veff!2utu) and
discuss the influence of magnetic fieldB on the continuous
spectrum@Eq. ~1!#, i.e. we try to estimate the DOS in mag
netic fields without any calculation. On one hand, Land
levels ~LL’s ! appear forEF!2utu ~2D-like paraboloid band
structure, modified effective massmy). If the thermal energy
is comparable to the Landau level separation (kBT'\v) the
DOS becomes oscillatory~leading to SdH oscillations! but
approaches the zero-field DOS~see also Fig. 3!. In other
words, the oscillations missing in the zero-field DOS a

FIG. 2. Real-space semiclassical trajectories of electron in m
netic field. 0: closed (EF,2utu), 1: critical (EF52utu), 2: open
(EF.2utu). The closed trajectories are elongated in the direct
parallel to the wires by a constant factorAmy /m and due to non-
parabolicity of the cosine band@Eq. 1#.
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exactly reproduced by the SC quantization condition~closed
trajectories,EF,2utu) which is fulfilled just whenEF lies in
the middle between two LL’s.

On the other hand, narrow gaps open in the continu
spectrum forEF@2utu due to the slight corrugation~by the
cosine term! of the almost 1D-like parabolic-trough ban
structure. Numerical calculations~using model from Sec. III!
show that these gaps are narrow enough to disappear d
thermal broadening and the zero-field DOS matches
nonzero-field DOS perfectly. The SC approach relying
non-quantized open trajectories (EF.2utu) and predicting
nonoscillatory magnetoresistance will therefore be succes
once again.

The picture is considerably different for strong magne
fields (\veff*2utu) at which the cyclotron radiusRc ap-
proachesd. The numerically computed DOS shows no sim
larity to the zero-field DOS~Fig. 3 again!. The nonzero-field
DOS rather resemblesg(E)}1/AE of a single quantum wire
~suppression of tunneling between two neighboring wi
when classical cyclotron radii become comparable tod) with
gaps both forE,2utu and E.2utu owing to the tunneling
between the wires. Therefore we expect oscillatory mag
toresistance for both closed and open SC trajectories on
trary to the SC predictions~magnetic breakdown in the SC
theory!.

The gaps occur at the boundary of the first magnetic B
louin zone~1MBZ! ~see Sec. II! and result from the period
icity of the dispersion relation inkx which in turn reflects the
invariance of the QM Hamiltonian to magnetic translation20

~this is what remains from the full translational symmetry
the x direction after switching on the magnetic field!. Mag-
netic breakdown can be included also in the SC pict
through tunneling between two open or two clos
trajectories3 ~see Fig. 2!. This is an ad hoc assumption
though.

The failure of the SC approach for strong magnetic fie
is apparent also in another context. Once the Fermi leve
set and the type of trajectory is determined, the same be
ior ~either 2DES-like SdH oscillations or 1DES-like no o
cillations! is predicted for all magnetic fields. However, it

g-

n

FIG. 3. The density of states forB50 ~dotted! and thermally
broadened (T'1 K) density of states for low field (\veff!2utu or
a!1, solid gray line! and high field~solid black line!.
8-3
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VÝBORNÝ, SMRČKA, AND DEUTSCHMANN PHYSICAL REVIEW B 66, 205318 ~2002!
clear even on the SC level that if the cyclotron radiusRc
5kFl 2 (kF is the Fermi wave vector,E5\2kF/2m) becomes
comparable tod, tunneling between the wires is suppress
and the system ought to switch to a quasi-1D regime.

The QM approach is suitable for both low and stro
magnetic fields. Moreover, it opens up the way to quant
tive calculations of the magnetoresistance and thus to
directly comparable to the experiments.

II. MODEL

Having chosen the Landau gaugeAW 5(By,0,0) our sys-
tem is described by the separable Hamiltonian (e5ueu)

H5
1

2m
~px1eBy!21

1

2m
py

21V~y!, ~3!

i.e., allowing to setC(x,y)5exp(ikx)c(y) for the eigenfunc-
tions. Our ansatz for the whole wave function is

C~x,y!5
1

A2p
exp~ ikx!(

j
aj~k!w~y2 jd !, ~4!

i.e., we use the ansatzuc(k,n)&5( jaj (k)u j & for c(y) @n is
the Landau index in the spectrum of Eqs.~5! or ~3! for a
given k] where u j & is the ground state localized in thej th
well of the potential~corresponds to the Wannier state of t
B50 case!. We have thus limited our model just to the low
est band in the modulation direction by this ansatz. T
Fermi level lies always deep below the top of the modulat
potential in our calculations.

Next we use the tight-binding approximation~i.e., ^ i u j &
5d i , j , ^ i uHu j &5td i , j 61 , t,0) and obtain the Hamiltonian
matrix elements~see also Wulfet al.21!

Hi j 5
\2

2m
K2@~k/K !1 i #2d i , j1td i , j 61 , K5d

eB

\
. ~5!

In our model the real physical system is thus represented
the parameterst ~hopping! and d ~period! for the structure
and of courseB for the magnetic field.

Note that~up to the scaling ofk and energy! the problem
~5! effectively depends only on the single parametera: Eq.
~5! can be written in dimensionless form

Hi j 5utu@a2~~k/K !1 i !2d i , j2d i , j 61#, ~6!

a25
e2B2

m

d2

2utu
5S \veff

2utu D 2

.

If we now assume the system to be infinite in they direction
the matrix problem~5! is mathematically equivalent to th
Mathieu equation

2
\2

2m
c9~x!22utucos~Kx!c~x!5Ec~x!, ~7!

i.e., 1D Schro¨dinger equation for a fictitious particle sub
jected to potentialW(x)522utucosKx. The detailed descrip
tion of this model can be found in Ref. 22. To avoid misu
derstanding, let us point out that the amplitude ofW(x) and
20531
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the height of the barriers between the wires~see Fig. 1! are
different quantities, moreover ifV0 grows, the amplitude of
W(x)}2utu falls.

This allows us to determine the spectrum of Eq.~5! quali-
tatively, and therefore also the DOS, even before we ca
out the numerical calculations. Let the magnetic field
weak at first (a!1, see explanation below in this para
graph!. BandsE(k) should appear~as a consequence of th
Bloch theorem! and we may limit ourselves to 1MBZ, th
first ‘‘magnetic Brillouin zone’’ kP(2 1

2 K, 1
2 K). For E

!2utu we expect those bands to be equidistantly spaced
narrow. The former follows fromW(x)'2utu(211 1

2 K2x2)
near the potential minimum~the conditiona!1 means just
that the spacing of such states is!2utu), the latter is due to
the smallness of the overlap of low-lying states in two neig
boring wells ofW(x). In contrast, forE@2utu we expect the
spectrum to be almost similar to the one of 1D free electr
E(k)5( i\

2(k1 iK )2/2m. The underlying nonconstant po
tential V will manifest itself in the gaps which open at th
Brillouin zone boundaries (k56 1

2 K).
Let us now translate this analysis into terms of the ori

nal problem~5!. Consider a fixed magnetic field~or constant
a). For low energies we obtain nearly equidistant and sh
Landau levels~free 2D electron gas in magnetic field!. At
high energies we get a sum of almost 1D densities of sta
i.e. independent quantum wires~whereB plays no role!. The
transition occurs aroundE52utu. This agrees with the semi
classical theory except for the narrow gaps in the continu
quasifree-1D-electron part of the spectrum. These indic
the magnetic breakdown for quantizing magnetic fields.

Secondly, we focus on strong magnetic fields (a@1). On
one hand, the states of Eq.~7! below 2utu will become more
widely spaced and even the lowest state will no longer h
E!2utu. We then expect even the lowest LB to be bro
~solid black curve at Fig. 3! because its energy lies in a
intermediate region betweenE!2utu and E@2utu. On the
other hand, the states withE.2utu which approach the free
electron states~and have a nearly free-electron parabo
spectrum! will have wider gaps~the smaller the lattice con
stant of a crystal, the wider the gaps!.

We may now compare the DOS being output from o
model with the experimentally measured resistance, see
4. In the experiments, the Fermi energy was adjusted
applying a gate voltageUg and we assume thatEF remains
constant while magnetic field is swept. Literally taken, th
would imply that the electron concentrationN in the 2DES is
not constant but oscillates withB. To be able to keep bothEF
and N constant consistently within our model we use t
zero-field relation betweenEF andN. This may be conceived
as an effect of localization~which is necessary for the Ha
plateaus to be visible, see Fig. 4!.

Experiments showed that the concentration of electron
proportional to the gate voltage~see Sec. IV!. The propor-
tionality constant is also approximately equal to the capa
of a parallel-plate capacitor corresponding to the gated st
ture. Looking at Fig. 4 we see the gaps in the DOS match
very well with the straight lines of magnetoresistance e
trema which justifies theUg↔EFÞEF(B) model of ours.

We can see in the Fig. 4 that varying the magnetic fi
8-4
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FIG. 4. Above: density of
states~arbitrary units! in the tight-
binding model for different mag-
netic fields and gate voltages. Be
low: measured resistanc
~logarithmic scale in the shad
code, arbitrary units!. Note the
match between the gaps in th
DOS ~light stripelike regions! and
the extrema in the magnetoresi
tance ~usually light regions of
shapes similar to the former ones!.
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and keeping the Fermi energy~or Ug) constant and low the
system behaves like an almost free 2D electron gas~sharp
LL’s, equidistant in 1/B) with modified effective massAmmy
~as predicted by SC theory!. At intermediateEF , however,
we observe that the narrow bands become broad at higB
indicating an effective 2D to 1D transition~when cyclotron
radii become smaller than the modulation period!. In con-
trast, the SC theory states that once the Fermi energy is s
magnetic field cannot change the dimensionality of the s
tem. WhenEF is high the quantum wires are decoupled, b
there still open gaps in the continuous spectrum~reflecting
the tunneling between the open SC orbits!.

The lighter region aroundB'11 T andUg'0.45 V in
the experimental data~Fig. 4 below! suggests that our mode
20531
t, a
s-
t

works no longer for strong magnetic fields (a@1) and low
Fermi energies~even the lowest LB nearly empty!. This con-
dition matches the situation when the cyclotron radius
much smaller thand and it means that our tight-bindin
model is inappropriate for magnetic fields strong enough
create LLs within one quantum wire~so that even the width
of wires will be large enough for the electrons to behave a
2DES inside one wire!. These are, however, rather extrem
conditions for the experiments shown in Fig. 4.

III. TRANSPORT: KUBO FORMULA

Knowing the eigenfunctions to the matrix problem~5! we
may use the linear response theory~Kubo formula, see e.g
8-5
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Ref. 23! to compute the conductivity tensor components~per
system areaA)

s i i ~EF!5
p\e2

A
Tr@ v̂ idG~EF2Ĥ !v̂ idG~EF2Ĥ !#

sxy~E!5
i\e2

A
•

1

2
Tr@ v̂xĜ

1~E!v̂ydG~E2Ĥ !

2 v̂xdG~E2Ĥ !v̂yĜ
2~E!#1e

]N~E!

]B
.

Here v̂x,y stand for the velocity operator components,dG(E
2Ĥ)52(1/2p i )@Ĝ1(E)2Ĝ2(E)# and Ĝ6(E)5(E2Ĥ
6 iG). Isotropic scattering by a random impurity potential
taken into account by means of the complex-valued s
energyS5D1 iG and we neglect its real part. In the se
consistent Born approximation and assumingG(E,B) to be
small compared to the level separation~typically \veff) we
can express components ofs by means of the DOSg(E)
and matrix elements ofy (v5eB/m)

sxx~E!5
2

pGd

e2

h

sgn@g~E!#

g~E!
1

4pG

d
~\v!2

e2

h
g~E!

3 (
n8Þn

S ^c~k,n8!uyuc~k,n!&

E~k,n8!2E~k,n!
D 2

,

syy~E!5
4pG

d

e2

h
g~E! (

n8Þn
~^c~k,n8!uyuc~k,n!&!2,

sxy~E!5e
]N~E!

]B
1

4p\v

d

e2

h
g~E!

3 (
n8Þn

~^c~k,n!uyuc~k,n8!&!2

~including spin degeneracy!. The symbolic expression
sgn@g(E)#/g(E) in the first term ofsxx indicates that this
term vanishes ifg(E)50. Just to get simpler formulas, th
additional assumption has been made that there are m
two points at the Fermi levelE5E(k,n) within the 1MBZ.
We reproduced the older results of Wulfet al.21 where the
G –independentsxy(E) was calculated within the sam
model but in a formally different way@Eqs. ~5!,~6! in Ref.
23#.

Note the structure of the components ofs: in general,
all the terms~except for the]N/]B term insxy) are products
of the DOS~g! and some matrix elements ofŷ. There are
two contributions to the conduction parallel to the wir
(sxx): the first term~proportional to 1/g) originates from the
diagonal matrix elementsd(k2k8)\k/(eB)1^c(k8,n)u
ŷuc(k,n)&}^c(k8,n)uv̂xuc(k,n)&5(1/\)(dE / dk)d(k2k8)
}1/g. It corresponds to the classical conductivity of a w
~open electron trajectories! or in other words it does not van
ish owing to the unilateral modulation, of the system: wit
out modulation~free 2DES! the DOS comprises of delt
peaks~sharp LL’s! and (sgng)/g→0. For E,2utu, we ob-
20531
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tain from our calculations LBs with nonzero width and th
reflects tunneling between two closed orbits in the SC pict
~see Fig. 2!, i.e., indicates a deviation from the quasi-2
behavior. This contribution to conductivity is beingsup-
pressedby the impurity scattering~by 1/G) or in other
words, persists even if there is no impurity scattering at

The conduction perpendicular to the wires (syy) and the
second term ofsxx reflect the inter-LB transitions and appe
thusdue toimpurity scattering~they are proportional toG).
These contributions might be viewed as a consequenc
tunneling between the open SC orbits. There is no requ
ment that^c(n,k)uyuc(m,k)&50 for un2mu.1 as in the
limit of weak modulation, but we found these matrix el
ments to be decaying rapidly with growingun2mu. In other
words, inter-LB scattering occurs dominantly between nei
boring LB’s. The Hall conductivity does not depend on t
scattering in the leading order at all.

Let us now concentrate on the issue of impurity scatt
ing. Following Refs. 20,24,25 we used an ansatz of s
energy depending only on energy~and B). This leads to a
self-consistent equation

S~E!}Tr
1

E2H2S~E!
,

where the proportionality constant describes the strength
the impurity scattering. This equation yields26,27 the well-
known result

G25
1

2p
\v

\

t

for free 2DES~i.e., no modulation! and short-range scatter
ing potential.t is the relaxation time in the zero magnet
field case~as in the Drude theory!. In our calculations we
used this ~i.e., G5gAB) as a phenomenological ansa
which has already proven to be useful in explaining the m
netoresistance data by long-period superlattices.28,29 Surpris-
ingly enough, even this simple ansatz provides a very g
qualitative agreement with the experimental data and ma
the results of the calculations depend on the fitting param
(g, scattering strength! in a very simple way.

In order to obtain data comparable to experiments,
need to express the resistivity tensor components

%yy5
sxx

sxxsyy1sxy
2

, %xy5
sxy

sxxsyy1sxy
2

. ~8!

A remarkable and important point of these formulas is tha
scattering is weak~i.e., the inter-LB term}G in sxx may be
neglected!, the denominators do not depend onG.

Due to the particular sample geometry a two-point m
surement is performed and thus the experimentally ac
sible quantity isRyy1Rxy ~longitudinal and transversal resis
tance in series!. Here Rxy5%xy and Ryy5c%yy with some
dimensionless constant geometrical factorc. Thus it seems
plausible to assume that the voltage drop measured is a
stant linear combination of%xy and%yy
8-6
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FIG. 5. Magnetoresistance. Calculations and experiment. Electron concentrations~from the top! 5.131011 cm-2, 3.831011 cm-2, 2.65
31011 cm-2. The lowest concentration corresponds toEF'2utu.
om
et
is

n

a
th
he

u

th

t.
ue
a
s.

of

lds

il-
h

ance
be-
di-

ew
c-
les
ich

w,
very

m-

jec-

tic

a

R5c%yy1%xy .

If scattering is weak, the magnetoresistances to be c
pared to experimental data contain a single fitting param
c/g. This comparison for different electron densities
shown in Fig. 5.

IV. DISCUSSION

Almost quantitative agreement is achieved for high co
centrations@Figs. 5~a!, 5~b!#. Exact ~no fitting parameter!
match between the magnetoresistance extrema in theory
experiments~which has been emphasised already on
DOS level! shows that the tight-binding model captures t
essential physics in our experiments.

Note also that the magnetoresistance approaches q
tized valuesR5(1/n)h/e2 for EF lying in the gap. First, this
allows us to determine the concentration of electronsN in the
system~compare filling factor of each plateaun and itsB).
Second, it confirms our model of the relation between
gate voltageUg and Fermi levelEF . However, as we may
see best in Fig. 5~c!, there is still room for improving the
model, e.g., by taking the localization effects into accoun

The quadratic rise of resistivity at low magnetic fields d
to the diagonal component (%yy) has been predicted within
SC model2 and measured also at weak-modulation sample29

Our results@with a single fitting parameter in Figs. 5~a!,
5~b!# deviate from this slightly because of the form
G(E,B)}AB. AssumingG independent onB in this region,
20531
-
er

-

nd
e

an-

e

the quadratic behavior is reconciled. For intermediate fie
the matrix elements ofŷ start to play a role.

Another feature of the tight-binding model is the capab
ity of explaining why the Hall plateaus show minima at hig
concentrations and maxima at low concentrations@Fig. 5~c!#.
Note, however, that even at this concentrationE'2utu.
Swapping the dominance ofsxy and sxx,yy @see Eq.~8!# is
the cause for the qualitative change of the magnetoresist
curve. Nevertheless, we are aware of the feebler match
tween theory and experiments at lower concentrations in
cating that our ansatz for the self-energy is rather crude.

V. CONCLUSION

The cleaved-edge-overgrowth technology opens a n
area of 2DES with short-period atomically precise unidire
tional modulation for experimental studies. Such samp
may be viewed as an array of coupled quantum wires wh
can be decoupled by applying reasonable (&5 T) perpen-
dicular magnetic field. From a theoretical point of vie
these systems have a simple band structure and can be
well described by a simple tight-binding model. It was de
onstrated that for weak magnetic field (\veff!2utu) the SC
approach argumenting with closed and open electron tra
tories is expected to be fairly good and itis good indeed. On
the other hand, this approach fails for quantizing magne
fields ~magnetic breakdown in the SC terminology!. The
fully quantum-mechanical tight-binding model offers both
8-7
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good way to estimate the applicability of the SC approa
and a reasonable description of the system for any magn
field unlessRc5kFl 2!d. This model is also very intuitive
on the level of DOS analysis owing to the analogy w
Mathieu equation~7!.

We found good agreement between the experimental m
netoresistance and calculations based on the linear resp
theory even with a very simple model for impurity scatte
ing. We expect that the match between theory and exp
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23P. Středa, J. Phys. C15, L717 ~1982!.
24C. Zhang and R. Gerhardts, Phys. Rev. B41, 12 850~1990!.
25T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys.54, 437~1982!.
26R. Gerhardts and J. Hajdu, Z. Phys.245, 126 ~1971!.
27R. Gerhardts, Z. Phys. B: Condens. Matter22, 327 ~1975!.
28A. Manolescu, R. Gerhardts, M. Tornow, D. Weiss, K. von Klit

ing, and G. Weinmann, Surf. Sci.361Õ362, 513 ~1996!.
29M. Tornow, D. Weiss, A. Manolescu, R. Menne, and K. von K

itzing, Phys. Rev. B54, 16 397~1996!.
30V0/2 is also the amplitude of the modulation potential. Here,

avoid this terminology to prevent confusion with the amplitu
of W(x) in Eq. ~7!.
8-8


