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Abstract

Magnetic breakdown is observed in a two-dimensional electron system subject to a strong, atomically precise,
one-dimensional potential with a period of 15 nm. The transition from closed to open electron orbits is studied in magneto-
transport experiments by continuously changing the Fermi energy of the superlattice within and above the �rst miniband.
Shubnikov–de Haas oscillations quench for Fermi energies close to the miniband gap but recover at higher magnetic �elds.
The density of states is clearly altered from a conventional 2D system which manifests itself in aperiodic magnetooscillations
when sweeping the Fermi energy at �xed magnetic �elds. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Man made periodic potentials have long been of
great interest for fundamental research and in view of
applications. On the one hand, epitaxially grown semi-
conductor superlattices have revealed a large variety
of e�ects in electronic transport, but so far research
has mainly concentrated on systems with Fermi en-
ergy close to the miniband minimum. Additionally,
for a given sample the Fermi energy is usually �xed
[1]. On the other hand, in surface lateral superlattices
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the Fermi energy is adjustable, but at the price of a
rather large periodicity and shallow potential modula-
tion which leads to a large number of occupied bands
[2]. We have extended a sample structure developed
by St�ormer et al. [3] to combine attractive features of
both: A two-dimensional electron system (2DES) re-
sides in an atomically precise superlattice, the Fermi
energy of which can continuously be adjusted over a
wide range by a gate, and the bandstructure of which
can be engineered by heterostructure MBE growth.
This sample design allows us to study superlattice DC
transport as well as magnetotransport properties of a
single partially or fully �lled band. Results of mag-
netotransport experiments are the topic of the present
paper.
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Fig. 1. Sample structure as obtained by MBE cleaved edge over-
growth.

2. Sample design

Our sample consists of an MBE-grown undoped
100× (119 �A GaAs=31 �A AlxGa1−xAs) superlattice
(x = 0:32) sandwiched between two highly doped n+

GaAs contacts grown on semi-insulating (0 0 1) GaAs
substrate, as shown in Fig. 1. After in situ cleaving the
sample, an AlxGa1−xAs spacer layer is grown on the
freshly exposed (1 1 0) plane, followed by a highly
doped n+ GaAs gate. By applying a positive gate volt-
age with respect to the superlattice contacts a 2DES
can thus be induced which resides at the interface
between the superlattice and the AlxGa1−xAs barrier.
A simple Kronig–Penney calculation yields a width
for the �rst miniband of 3.8 meV, separated from
the second miniband by a 60 meV one-dimensional
minigap. The �rst excited level of the triangular �eld
e�ect potential is expected at about 15 meV above
the �rst miniband.

3. Experimental results

Our measurements are performed in a quasi-four-
probe geometry between the superlattice contacts
with standard lock-in technique at liquid helium
temperatures, while magnetic �elds up to 14 T are
applied perpendicular to the 2DES. First we discuss
the Shubnikov–de Haas (SdH) oscillations in the lon-
gitudinal magnetoresistance obtained when sweeping
the magnetic �eld strength at �xed gate voltage, i.e.
at �xed electron density, see Fig. 2. For gate voltages
¿ 150 mV SdH oscillations are observed. The zero
�eld resistance decreases for increasing gate voltages
due to an increasing carrier density, and the magnetic
�eld B0, where SdH oscillations become visible, de-

Fig. 2. Shubnikov–de Haas measurement. For gate voltages above
450 mV a positive magnetoresistance, quenching of SdH oscilla-
tions and magnetic breakdown can be observed. The inset shows
the dependence of the electron density ns on the gate voltage Ug
as found by evaluation of the SdH oscillations.

creases, indicating an increasing e�ective mobility. At
a gate voltage of 375 mV the �eld B0 has a minimum
of 250 mT. From this value we can estimate a lower
bound for the electron mobility of 40 000 cm2=V s.
For larger gate voltages the �eld B0 increases again.
A drastic change of the magnetoresistance is observed
starting at a gate voltage of 450 mV. SdH oscillations
at low magnetic �elds are quenched in a region of
strong positive magnetoresistance which is propor-
tional to the square of the magnetic �eld. At high
magnetic �elds, SdH oscillations are recovered.
We now proceed to the analysis of these results.

We �nd that the positions of the minima of the SdH
oscillations are periodic if plotted against the inverse
magnetic �eld for all gate voltages above 150 mV.
By the usual evaluation of the obtained Landau plot
or by Fourier transformation we �nd an almost lin-
ear apparent electron density dependence on the gate
voltage of (6:4± 0:1)1011 cm−2 V−1, as shown in the
inset of Fig. 2. This value compares well with the ca-
pacity per area and charge of 6:7× 1011 cm−2 V−1

obtained by taking the sample as a simple capacitor
with appropriate dielectric constant. Note that a linear
dependence of the electron density on the gate volt-
age does not imply that the density of states is con-
stant. It may seem surprising that in our evaluation
of the SdH oscillations so far no sign of the arti�-
cial band structure came into play. The arti�cial band
structure and the presence of a minigap, though, man-
ifest themselves most strikingly in two ways. First in
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Fig. 3. Magnetooscillations for �xed magnetic �elds and variable
Fermi energy. The inset shows the increase of the zero �eld
resistance when the Fermi energy is raised above the miniband.
The displayed quantities and units are the same as in the main
graph.

the appearance of a strong, quadratic, positive magne-
toresistance for gate voltages above 450 mV, which
is exactly what is expected when open orbits become
present [4]. This means that at a gate voltage of 450
mV the Fermi energy is raised above the �rst mini-
band into the one-dimensional minigap. Second, the
minigap manifests itself in the quenching of the SdH
oscillations in that regime, which is because of the ab-
sence of closed orbits in k-space, so that at low mag-
netic �elds SdH oscillations are quenched. However,
at higher magnetic �elds, SdH oscillations are recov-
ered due to magnetic breakdown [5]. In this regime,
Bragg reections are suppressed due to Lorentz force
induced by magnetic �elds and electrons tunnel in
k-space such that closed orbits are recovered. Mag-
netic breakdown has been observed in metals [6], in
‘bulk’ superlattices [7], in density-modulated 2DES
[2] and in double quantum wells [8]. To our knowl-
edge we show the �rst example of magnetic break-
down in the �rst miniband of a modulated 2DES.
Second, we discuss the magnetooscillations ob-

served when sweeping the Fermi energy from within
the miniband into the minigap through the Landau
levels while keeping the magnetic �eld strength con-
stant. A selection of traces of our experimental re-
sults are displayed in Fig. 3. For zero magnetic �eld
and for increasing gate voltages up to 500 mV, the
longitudinal resistance sharply drops to a minimum
of 195 
 due to an increasing electron density. At
500 mV, though, a W-shaped structure is observed

in the resistance, and for larger gate voltages the re-
sistance subsequently increases (see inset). When a
magnetic �eld larger than 500 mT is applied, magne-
tooscillations are observed. These are quenched for
gate voltages larger than 450 mV while the magne-
toresistance increases again for increasing gate volt-
ages. For larger magnetic �elds magnetooscillations
are again observed for gate voltages above 450 mV.
Most importantly, the spacing of the magnetooscilla-
tions is far from regular.
We now try to give an explanation for theW-shaped

longitudinal resistance at zero magnetic �eld. For a
conventional 2DES of free Bloch electrons the longi-
tudinal resistance continuously decreases with increas-
ing electron density as long as only the ground state is
occupied. In our system, though, as the Fermi energy
approaches the top of the �rst miniband, the density
of states becomes very large and then decreases when
the Fermi energy is in the minigap. Therefore close
to the minigap electron scattering and thus the longi-
tudinal resistance are enhanced. As the Fermi energy
is raised into the minigap, the electron density further
increases, which leads to a reduced resistance again.
At the same time the Fermi surface begins to extend
beyond the �rst Brillouin zone and attens out, such
that the mean electron velocity decreases, which at
last leads to an increase in resistance. This behavior of
the longitudinal resistance at zero magnetic �eld can
again be taken as direct evidence for the existence of
a minigap.
When a su�ciently large magnetic �eld is present,

for a 2DES Landau levels are resolved in the mag-
netoresistance with a constant energy spacing of ˜!c
where !c is the cyclotron frequency. In contrast we
�nd magnetooscillations which are not equally spaced
in gate voltage, although the electron density in our
sample linearly depends on the gate voltage. For a
given magnetic �eld the spacing in gate voltage is
larger when measured close to the minigap. Again this
observation can be explained by a density of states
which becomes large in the vicinity of the miniband
edge. A detailed analysis of the density of states per
Landau level, taking into account a non-constant elec-
tron mass, the non-trivial shape of the orbits in k-space
and the spin splitting of the Landau levels is beyond
the scope of the present paper.
In summary, we have presented a novel elec-

tronic system which bridges the gap between con-
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ventional ‘bulk’ semiconductor superlattices and
density-modulated two-dimensional electron systems.
Bandstructure parameters in our sample are entirely
known and can be tailored to atomic precision through
MBE growth. Additionally, the Fermi energy can
continuously be controlled by a gate. In magneto-
transport experiments the calculated Kronig–Penney
bandstructure is directly evidenced. Aperiodic mag-
netoresistance oscillations for �xed magnetic �elds
are observed when sweeping the gate voltage. SdH
oscillations are found for electron densities below
2:5× 1011 cm−2 as in a conventional high electron
mobility 2DES. For higher electron densities SdH
oscillations are quenched within a region of strong
positive magnetoresistance. SdH oscillations are re-
covered for high magnetic �elds, which we attribute
to magnetic breakdown in the minigap. The minigap
also becomes visible in the longitudinal resistance
when sweeping the Fermi energy above the �rst
miniband at zero magnetic �eld.
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