
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 3, MARCH 2005 489

Analog VLSI Implementation of Spatio-Temporal
Frequency Tuned Visual Motion Algorithms

Charles M. Higgins, Senior Member, IEEE, Vivek Pant, and Rainer Deutschmann

Abstract—The computation of local visual motion can be ac-
complished very efficiently in the focal plane with custom very
large-scale integration (VLSI) hardware. Algorithms based on
measurement of the spatial and temporal frequency content
of the visual motion signal, since they incorporate no thresh-
olding operation, allow highly sensitive responses to low contrast
and low-speed visual motion stimuli. We describe analog VLSI
implementations of the three most prominent spatio-temporal
frequency-based visual motion algorithms, present characteriza-
tions of their performance, and compare the advantages of each
on an equal basis. This comparison highlights important issues in
the design of analog VLSI sensors, including the effects of circuit
design on power consumption, the tradeoffs of subthreshold
versus above-threshold MOSFET biasing, and methods of layout
for focal plane vision processing arrays. The presented sensors
are capable of distinguishing the direction of motion of visual
stimuli to less than 5% contrast, while consuming as little as 1

W of electrical power. These visual motion sensors are useful in
embedded applications where minimum power consumption, size,
and weight are crucial.

Index Terms—Analog very large-scale integration (VLSI),
biomimetic, spatio-temporal frequency, vision chip.

I. INTRODUCTION

WHEN the visual image of a dynamic three-dimensional
world is projected onto a two-dimensional (2-D) retina,

the true motion of objects in the world relative to the viewer be-
comes complex to interpret. Estimating a measure of this mo-
tion is one of the many tasks of a visual system. Biological vi-
sual systems, as well as most artificial vision systems, begin this
process by detecting the image motion in an array of small local
regions of the visual image. The representation of this local mo-
tion information is key to the visual system’s ability to recon-
struct the motion of objects in the world.

A common representation in artificial vision systems is optical
flow, inwhichvisualmotionintheimageisrepresentedbyanarray
of 2-D vectors, each representing the speed and direction of mo-
tioninalocalregionof theimage.However,manysituationsoccur
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in nature that the optical flow representation is insufficient to rep-
resent. If a local image region contains portions of two objects
moving in different manners, which vector is correct? If two ob-
jectsmoveacrossoneanotherandoneis transparent (forexample,
when dust is blown across the road while in a moving vehicle),
which motion should the optical flow vector represent? The flaw
in the optical flow representation is the necessity of only a single
motion represented in each local image region.

Perhaps for this reason, biological visual systems universally
begin motion processing by using an altogether different rep-
resentation. Biological visual systems from flies to primates
compute the spatio-temporal frequency content of local image
patches [1], [2], representing the motion of objects in the ac-
tivation of an array of oriented spatio-temporal frequency fil-
ters [3], [4]. This use of a place code (relative activation of a
bank of filters) rather than a value code (numerical velocity) has
powerful implications. The activation of one filter representing
leftward motion does not preclude the activation of a filter rep-
resenting a different direction at a different spatio-temporal fre-
quency tuning, and thus multiple motions in a local image patch
are explicitly allowed, so long as they can be distinguished in
frequency content. This greatly facilitates the solution of the
aperture problem [5] (determination of the true motion of an ex-
tended object from local image measurements), since local mo-
tion measurements that are all consistent with one object need
not conflict with the measurements of another moving object
or the background. The advantages of this representation over
optical flow are obvious, but if estimation of local image ve-
locity is required these advantages come at the cost of the ne-
cessity of a bank of filters for each local image region. How-
ever, it is not clear that it is necessary to estimate image ve-
locity to generate useful visually-guided behavior in real-world
scenes. While it has been suggested that human visual systems
may combine banks of spatio-temporal filters to estimate ve-
locity [6], this seems unlikely to be true in insects due to their
relatively small number of neurons [7]. Rather, it seems more
likely that insect behavior is generated from spatio-temporal fre-
quency tuned motion detectors [8] or from a prior intermediate
stage of motion processing [9].

Regardless of the representation used, real-time estimation
of visual motion requires significant computation. Performing
this computation in special-purpose hardware is highly advan-
tageous to reduce the load on later processing stages, poten-
tially reducing power, weight, and size requirements over a con-
ventional CCD/DSP combination. Very large-scale integration
(VLSI) implementation of visual motion algorithms has been
accomplished by a large number of authors over the last two
decades [10]–[35] varying in implementation from digital block
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matching chips with serial inputs to analog VLSI motion sen-
sors. One significant advantage of the analog VLSI approach
for visual motion processing is continuous-time operation: the
lack of temporal sampling removes the possibility of temporal
aliasing. Secondly, the true parallel approach of fabricating a
dedicated processor to compute motion in each local region of
the image makes higher resolution processing only a matter of
fabricating a larger VLSI chip. It is very difficult to realistically
compare the performance of these many implementations char-
acterized in many different ways with different criteria of opti-
mality, even among monolithic analog VLSI sensors. For this
reason, in this work, we describe three sensors and compare
them on an equal basis to highlight issues in their design.

One significant advantage of spatio-temporal frequency based
visual motion algorithms for analog VLSI implementation is the
complete lack of any thresholding step. Many motion algorithms
whichcomputeaformofopticalflowrequirea“featuredetection”
stage [23] to compute image speed independently of spatial fre-
quency and contrast. The threshold required to detect a feature is
the weak point of these algorithms, reducing their ability to re-
spond to low-contrast and low-speed moving objects. Such algo-
rithmsmustraisethethresholdabovethelevelofnoisetoavoidde-
tectingspuriousfeatures,makingit impossibleforthemtorespond
tostimuliwhichdonotreachthethreshold.However,implementa-
tionsofspatio-temporal frequencymotionalgorithms(alongwith
other algorithms which lack a thresholding step, many of which
aremathematicallyequivalenttospatio-temporalfrequencybased
methods)are limited in their lowspeedandcontrast responseonly
by signal-to-noise ratio. Even if a low-contrast object creates a re-
sponsebelowthenoiselevel,ifthemotionissustaineditispossible
in principle to average out the random noise and still detect it.

With the goal of endowing small autonomous robots with
powerful visual systems, in this paper we present and compare
monolithic analog VLSI implementations of the three most
prominent spatio-temporal frequency based visual motion algo-
rithms, namely the Adelson–Bergen (AB) motion energy model
[4],theBarlow–Levick(BL)model[36],andtheHassenstein–Re-
ichardt (HR) model [37]. Most of the MOSFET circuits in these
implementations are operated in the subthreshold regime for
low power consumption. Since the human visual system cannot
process frequencies higher than about 60 Hz (as evidenced by
computer monitor refresh rates of 70–85 Hz), and even the faster
insect visual system has cut off by 200–300 Hz [38], clearly the
highfrequencybandwidthsofabove-thresholdMOSFETcircuits
are not required to generate useful visually-guided behavior. We
begin by describing the algorithms used by each sensor, then
show their analog circuit implementations, and finally present
experimental characterization results from each sensor using
the same apparatus. All three sensors are suitable for use in em-
bedded applications where size, weight, and power consumption
are important design factors. A method for creating a bank of
such spatio-temporal filters is addressed in a related paper [39].

II. VISUAL MOTION ALGORITHMS

The three visual motion sensors described in this paper are
based on algorithms which are equivalent at an appropriate level
of abstraction [40], in that they all measure the energy in a

band of spatial and temporal frequency. The theoretical basis
for this similarity is presented in this section, while details of
each sensor’s response are derived in the Appendix. Each algo-
rithm incorporates an essential nonlinearity required to make the
mean of the output signal proportional to the direction of stim-
ulus motion. Despite the high-level similarities between the al-
gorithms, the steps required to implement each algorithm differ
significantly. In addition, two of the algorithms have been modi-
fied from their canonical form to facilitate hardware implemen-
tation.

A. Adelson–Bergen Algorithm

The AB algorithm [4] is commonly used as a mathematical
model of early visual motion processing in primates [41]. Other
authors have published sensors based on this algorithm [31], but
not in a monolithic VLSI implementation. The algorithm, shown
in Fig. 1(a), is altered from the canonical form in four ways [33].
Firstly, the steady-state photoreceptor response is removed from
the signal (using a high-pass filter) to enhance direction selec-
tivity. Secondly, the explicit even and odd Gabor spatial filtering
used in the canonical AB model is replaced by the spatial fil-
tering implicit in a local visual sampling point. The distance
between two neighboring visual sampling points is utilized to
achieve the necessary spatial phase difference. Thirdly, rather
than using two explicit temporal filters, one temporal pathway is
unfiltered, and the second passed through a first-order low-pass
filter. Finally, a full-wave rectification (absolute value) is used
to approximate the squaring operation of the original algorithm.
These alterations significantly simplify implementation of the
algorithm without altering the fact that the sensor mean output is
spatio-temporal frequency tuned. The spatial frequency tuning
is dependent upon the spacing of neighboring visual sampling
points, and the temporal frequency tuning upon the time con-
stant of the low-pass filter.

In terms of the signals shown in Fig. 1, the output of the AB
algorithm is

(1)

A derivation of the mean response of this algorithm to sinusoidal
gratings is given in the Appendix. However, if we replace the
absolute value with the squaring operation that it approximates,
we can obtain

(2)

where is a spatio-temporal frequency-tuned motion
output term shared by the canonical versions of all three motion
sensors. In the special case of a one-dimensional moving si-
nusoidal grating stimulus with contrast , temporal frequency

, and spatial frequency can be shown to be (see
Appendix)

(3)

is the magnitude response of the high-pass filter,
and are respectively the magnitude and phase response
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Fig. 1. Visual motion algorithms. (a) AB. (b) BL. (c) HR. PR1 and PR2 are inputs from two neighboring visual sampling points. HPF and LPF denote respectively
high-pass and low-pass temporal filters. � indicates a summation. ABS denotes the absolute value operation. The signals shown, common to all three motion
algorithms, are S (delayed response of photoreceptor one), S (undelayed response of photoreceptor one), S (delayed response of photoreceptor two), and
S (undelayed response of photoreceptor two). For each algorithm, the preferred direction (which generates a positive motion response) is leftward.

of the low-pass filter, and the spatial phase factor is computed
as

(4)

where is the photoreceptor separation. Note that this output
is constant over time. This equation can clearly be seen to have
bandpass tuning in spatial frequency with its strongest response
at , that is, one quarter spatial cycle per photore-
ceptor spacing. Since the temporal response magnitude is the
product of a high-pass and low-pass filter it also has a bandpass
tuning, and in the case where both filters are first order with time
constant , it can be shown that the peak temporal frequency of

occurs at .

B. Barlow–Levick Algorithm

The BL algorithm [36] was originally proposed as the neu-
ronal circuitry for direction selectivity in the rabbit retina. This
algorithm has previously been the inspiration for an analog
VLSI motion sensor [16], [18] which required a stimulus to
cross multiple pixels to be strongly detected. Shown in Fig. 1(b),
the algorithm incorporates the same high-pass filtering stage as
in the AB algorithm, but then combines direct “excitation” from
one photoreceptor with delayed “inhibition” from the neighbor.
This creates a motion subunit sensitive to motion from the
first photoreceptor toward the second. A mirror symmetrical
unit is created, and the two units are combined after taking the
absolute value of each to preserve the directional properties.
Expressed in terms of the signals in Fig. 1, the output of this
algorithm is

(5)

A derivation of the mean response of this algorithm to sinusoidal
gratings is given in the Appendix. However, if the absolute value
is replaced with a square, the output can be shown to be

(6)

In the case of a drifting sinusoidal grating stimulus, the last four
terms sum to a zero-mean sinusoid and thus do not alter the fact
that the mean output of the sensor is spatio-temporal frequency
tuned.

C. Hassenstein–Reichardt Algorithm

The HR algorithm [3], [37] was proposed in the 1950’s to
model the optomotor response in the beetle Chlorophanus,
and is currently the leading mathematical model of insect
elementary motion detection [42]. Several authors have fabri-
cated monolithic VLSI versions of this algorithm [12], [17],
[32], the closest to the present implementation being that of
Harrison and Koch [32], whose algorithm is similar to the
present one but whose implementation is compared in the next
section. Like the previous algorithm, the HR algorithm [shown
in Fig. 1(c)] synthesizes two subunits sensitive to motion in
opposite directions by combining the delayed response from
one photoreceptor with the undelayed response from a second.
However, the HR algorithm combines these channels using a
multiplication, followed by synthesis of the final output from
the two subunits. Expressed in terms of the signals in Fig. 1,
the output of this algorithm is

(7)

and is spatio-temporal frequency tuned.
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Fig. 2. Block diagram of analog circuit implementations of visual motion algorithms. (a) AB. (b) BL. (c) HR. PR indicates a photoreceptor circuit which transduces
local light intensity into a voltage (see Fig. 3). LPF indicates a first-order g -C low-pass filter using a 5-transistor transconductance amplifier. DP indicates a
differential pair used to convert a differential voltage into a differential current. Bold arrows in panel a indicate a differential current signal. CM indicates a current
mirror, used to change the sign of a current. ABS indicates a current-mode absolute value circuit (Fig. 3). OTA indicates a 7-transistor wide-range operational
transconductance amplifier (Fig. 3). Finally, GM represents a Gilbert multiplier, used to multiply two differential voltages.

D. Nonlinearities in the Algorithms

The absolute value operation is used in the modified AB and
BL algorithms to approximate a (harder to implement) squaring
function. The squaring operation on a sinusoid results in an
output with two frequency components: one at dc proportional
to the square of the amplitude (the crucial component for the
sensor output) and one at double the frequency of the input
signal (which will be removed by time-averaging). A rectifica-
tion produces these same two frequency components (although
the dc component is directly proportional to amplitude), but also
produces harmonics at higher frequencies, thus providing less
magnitude in the dc signal. As the Appendix derivations show,
the fact that the absolute value operation is used in the imple-
mentation of the AB and BL algorithms rather than the square
has two primary effects. First, the response of each sensor is di-
rectly proportional to contrast, rather than the square of contrast.
Second, the shape of the spatio-temporal frequency response of
these sensors is slightly distorted relative to .

While each algorithm is necessarily nonlinear, the canonical
version of each algorithm can be characterized as a linear system
by looking only at the mean of the sensor output. The mean
output of each algorithm above to a sinusoidal grating input is a
scaled version of . Consider the mean output of the algo-
rithms to two distinct sinusoidal grating stimuli

(8)

(9)

The mean output of the canonical algorithms to the sum of the
two sinusoidal grating stimuli can be shown to be

(10)

Thus, the mean output of the sensor in response to the sum of
two sinusoidal grating stimuli is the sum of the mean outputs
in response to the individual stimuli, and the algorithms can be
termed “linear in the mean.” For this reason, we characterize
each sensor by its mean output.

III. HARDWARE ARCHITECTURE

Each of the three algorithms has been implemented in analog
VLSI hardware, with a design emphasis on demonstrating the
low speed and low contrast response possible with this type of
algorithm, while retaining small pixel size and low power con-
sumption. A separate VLSI chip has been fabricated to evaluate
each algorithm, with the algorithm implemented in each pixel
of a focal plane image processing array. Each chip incorporates
scanners [43] to allow individual pixel readout. A full block dia-
gram of each of the three pixel circuit implementations is shown
in Fig. 2; circuit diagrams of each sensor are given in Fig. 3.

A. Common Circuit Design Elements

Used for phototransduction in all three motion pixels is the
adaptive photoreceptor by Delbrück and Mead [44]. This cir-
cuit is used in its original form in the BL pixel. The elaborated
photoreceptor by Liu [45], which allows control of the adapta-
tion time constant through the biases and , is used
in the AB and HR pixels. The ratio of the vertical to the lateral
capacitor value (to which the transient gain is proportional) is
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Fig. 3. Pixel circuit diagrams of visual motion sensor implementations. (a) AB sensor. Not shown (refer to Fig. 2) are two additional differential pair, current mirror,
and absolute value circuits used to complete the computation with signals from the neighboring pixel. (b) BL sensor. Not shown are an additional transconductance
amplifier and absolute value circuit. (c) HR sensor. Not shown is a second Gilbert multiplier. V and V are the photoreceptor signals from a neighboring
pixel.

approximately 15 for the AB and HR pixels, and 10 in the BL
pixel. All three sensors use this circuit to provide high-pass fil-
tering; however, since the upper frequency cutoff is determined
by the bias setting , this circuit has an overall bandpass
characteristic which limits the high-frequency response of each
sensor. This circuit provides two voltage outputs: , with a
high sensitivity to transient changes in contrast and a low sensi-
tivity to ambient illumination levels; and , which is primarily
sensitive to the long-term illumination level. The BL pixel uses

directly as a high-pass filtered signal, since its response
to sustained illumination is reduced relative to transient illumi-
nation. To improve the high-pass filtering operation, the AB and
HR pixels use further circuitry to take the difference of
and . This difference has near zero response to mean lumi-
nance and thus has effectively been high-pass filtered with the

time constant controlled by the adaptation time constant of the
photoreceptor.

In all three pixel circuits, is low-pass filtered using a
first order -C filter [46] to produce . The AB and HR
pixels use a P-type transconductance amplifier, while the BL
pixel uses an N-type amplifier. In each case, the capacitor value
is approximately 1.7 pF. The bias controls the low-pass
filter time constant.

B. Adelson–Bergen Sensor

In the AB sensor [Fig. 3(a)], P-type differential pairs are used
to subtract local signals and from and also to
do the same with these three signals from the neighboring pixel
(differential pairs not shown). Since each current must go to
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TABLE I
MOTION SENSOR CHIP SPECIFICATIONS*

*In addition to transistor count shown, each pixel also contains a photodiode (area given above) and three capacitors (see text). power consumption shown is

as biased for best performance. Power-supply voltage was 5 V. Larger power consumption of BL sensor is due to above-threshold photoreceptor bias current (see

text).

two places in the computation, doubled differential pairs are re-
quired, with the doubled transistors on each side sharing equally
in the current if the Early effect is neglected. These differential
pairs convert the voltage differences into differential currents,
which are then properly routed to perform the AB computation
in current mode. The bias controls the magnitude of
sensor current output. To implement the rest of the algorithm,
current mirrors are used to change the signs of currents where
a difference is necessary, and Kirchoff’s current law (KCL) to
perform additions. Four three-transistor current-mode absolute
value circuits [47] are used to implement the necessary nonlin-
earities. A summary of the specifications of the AB sensor is
given in Table I.

C. Barlow–Levick Sensor

The BL sensor [Fig. 3(b)] uses an n-type transconductance
amplifier, with its linear differential input range extended by
source degeneration of the differential pair, to subtract the local
voltage signal from the filtered signal from the neigh-
boring photoreceptor . A second transconductance am-
plifier (not shown) does the same with the two signals
and . The bias controls the magnitude of sensor
output current. Current-mode rectifier circuits [48] (only one
shown) are used for computing the absolute value of each cur-
rent. The bias is set at a dc level such that both output
transistors of the transconductance amplifier can stay in satura-
tion. This rectifier circuit can be used with either the P-type or
N-type mirror providing the output current to obtain either cur-
rent output sign. By taking the output of the two rectifier circuits
with different current signs, KCL is used to perform the final
subtraction. A summary of the specifications of the BL sensor
is given in Table I. Despite the fact that the BL pixel was laid
out in a one-dimensional array, scaling to two dimensions poses
no technical challenges since no additional pixel wiring would
be required to support two-dimensional scanner circuitry.

D. Hassenstein–Reichardt Sensor

The HR sensor [Fig. 3(c)] is the simplest of all sensors shown.
It uses a Gilbert multiplier to produce a current proportional to
the product of with . The bias
controls the magnitude of the sensor current output. A second
Gilbert multiplier (not shown) produces a current proportional
to the product of with . The final

current mirror on the second Gilbert multiplier is switched input
for output to provide the opposite current sign from the first
multiplier, so that the final subtraction can be performed with
KCL. A summary of the specifications of the HR sensor is given
in Table I.

The subtraction of the long-term mean voltage from
the photoreceptor signal is the primary difference between
our implementation and that of Harrison [32], who uses a
lateral dc-clamped capacitor to perform the high-pass filtering
operation.

IV. EXPERIMENTAL CHARACTERIZATION OF MOTION SENSORS

A single pixel of each VLSI sensor was visually character-
ized by presenting computer-generated moving visual stimuli
on an LCD screen (used for its low flicker). An image of this
stimulus was focused onto each chip using a camera lens. De-
spite the fact that some of the sensors were laid out in two-di-
mensional arrays, each individual sensor on all chips responds
maximally to visual stimuli moving along the axis of the two
photoreceptors involved in its motion computation. We refer to
stimuli which move in that direction which elicits the largest
positive mean current output from the sensor as preferred di-
rection stimuli, and stimuli which move in that direction which
elicits the largest negative mean current output from the sensor
as null direction stimuli. Each chip was biased to maximize the
difference between mean outputs in response to preferred and
null direction stimuli (which we use as a definition of good per-
formance) at a differential pair bias current in the nanoamperes.
For the BL chip, this required biasing the photoreceptor well
above threshold to satisfy the saturation condition for the bias
transistor of the N-type transconductance amplifier in the next
stage. All other sensor circuits were biased in the subthreshold
regime to save power.

In this section, we detail the visual stimuli used and present
results of our characterizations.

A. Visual Stimuli

Unless otherwise stated, the stimuli were all sinusoidal grat-
ings [refer to (A.1)]. At a given bias setting, we define the “op-
timal” stimulus (or stimulus parameter value) as the one that
maximizes the difference between mean outputs to preferred
and null direction stimuli. Whenever one or more parameters
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Fig. 4. Raw current output (in nanoamperes) of individual analog VLSI motion sensors to a moving sinusoidal grating stimulus. (a) AB. (b) BL. (c) HR. The
stimulus moves leftward for the first four seconds (yielding a positive mean output), orthogonal to the sensor orientation between 4 and 8 s (zero mean output),
rightward (negative mean output) between 8 and 12 s, and then stops (zero output). The magnitude of these outputs can be controlled by pixel biases.

were being varied, all other parameters were held at their op-
timal value.

For each chip, a fixed mean illumination level was held
for all sinusoidal visual stimuli. The AB and BL sensors were
characterized with a mean illumination of 50% of the maximal
LCD brightness, which corresponded to 0.739 W/m . Due to a
light-induced leakage problem with the HR sensor (see Discus-
sion), it was characterized with a lower fixed mean illumination
level of 20% of the maximum possible, which corresponded to
0.323 W/m .

Due to the brightness of the “black” regions of the LCD
screen, the maximum possible contrast was approximately
80%. Optimal stimulus contrast for the AB and BL chips was
maximum. Due to light leakage effects on the HR sensor, it was
characterized for an optimal contrast of 20%.

For an equal comparison between chips, spatial frequency
was calibrated in units of cycles per chip pixel (that is, the
number of spatial periods of a sinusoid that fit in the distance
from the center of one photoreceptor to its neighbor) for each
chip. The optimal spatial frequency for the AB and BL sensors
was 0.25 cycles per chip pixel, at which setting their mean
outputs are theoretically predicted to be be maximal. Due to
the light-induced leakage problem with the HR sensor, and the

corresponding shift of spatial frequency characteristic [refer to
Fig. 5(c), shown later], the HR sensor was characterized at an
optimal spatial frequency of 0.15 cycles per chip pixel.

Temporal frequencies were varied from zero to about 20 Hz,
with each sensor electronically tuned to have maximum mean
output at a temporal frequency of 1.4 Hz.

Outputs of the chips are in the form of currents in the nanoam-
pere range, and were converted to voltages using off-chip cur-
rent sense amplifiers for data collection. Data were averaged for
ten temporal periods of the stimulus, which was long enough
that further averaging did not significantly change the data.

B. Results

The raw current output of each sensor to an optimal sinusoidal
grating stimulus is shown in Fig. 4. Visual stimuli move first in
the preferred direction, then move orthogonal to the sensor ori-
entation (which stimulates both photoreceptors identically and
should elicit zero mean response), and finally in the null di-
rection. The AB and BL sensors achieve a large difference in
mean value between the three stimulus directions relative to the
amplitude of the overall waveform, while the responses of the
HR sensor are much more overlapping. Theoretically, due to the
symmetry in each motion algorithm, each sensor should have no
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Fig. 5. Mean output of analog VLSI motion sensor implementations to variation of spatial and temporal frequency, shown in nanoamperes. (a) AB. (b) BL. (c)
HR. Brighter gray levels indicate stronger responses. Each point in the plot corresponds to the mean sensor output over ten temporal periods of a moving sinusoidal
grating with a particular combination of spatial and temporal frequency. Note that negative temporal (or spatial) frequency corresponds to a change in stimulus
direction. The asymmetric shape of the HR response is due to light-induced leakage (see text).

response at all to orthogonal stimuli; any response of the sensor
is due to transistor mismatch. Compared to the AB and HR sen-
sors, the BL sensor has little response to orthogonal stimuli due
to symmetry between its left and right subunits, resulting from
improved photoreceptor matching at an above-threshold bias
current (see Section V).

A series of moving sinusoidal stimuli with varying spatial and
temporal frequency was presented to each chip, and the mean
output of the sensor over ten temporal periods of each sinusoid
computed. The results are plotted in Fig. 5. It can clearly be
seen that each sensor is tuned in spatial and temporal frequency,
and has responses of opposite sign for stimuli moving in dif-
ferent directions. The nominal tuning of each sensor in spatial
frequency should occur at 0.25 cycles per chip pixel, and this
is significantly violated only for the HR sensor which suffers a
light-induced leakage problem. This light leakage also leads to
the asymmetry of the HR’s plot (see Discussion).

The optimal temporal frequency of each sensor can be varied
electronically,asdemonstratedfortheABsensorinFig.6.Ateach
setting, the temporal frequency tuning curve is bandpass, as pre-
dicted by (3). Note the very low temporal frequencies in this plot:
thegraph tunedtothe lowest frequencypeaksatabout1Hz.While
maintaining subthreshold bias conditions, the peak temporal fre-
quency can be biased to more than 100 Hz, which is already more
bandwidth than many biological visual systems utilize.

Fig. 6. Electronic variation of temporal frequency response, demonstrated for
the AB motion sensor. Bias V was set at 4.46 V (plotted with dots), 4.42 V
(asterisks), and 4.38 V (circles), all of which were subthreshold. Note tunability
to extremely low-speed stimuli (very low temporal frequencies). Peak response
is modulated by the bandpass frequency characteristic of the photoreceptor
circuit, operated in subthreshold.

Using the optimal spatial and temporal frequency for each
chip, the contrast was varied from zero to the maximum pos-
sible, resulting in the curves of Fig. 7. Responses to stimuli
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Fig. 7. Contrast response of analog VLSI motion implementations (mean output shown in nanoamperes). (a) AB. (b) BL. (c) HR (note smaller contrast scale due
to light-induced leakage). Each point shown is the mean output over ten temporal stimulus periods. Circles indicate responses to motion in the preferred direction;
asterisks in the null direction. The shape of the preferred-direction response of the HR sensor at higher contrast is due to light-induced leakage (see Discussion).

moving in the preferred and null directions are compared at a
range of contrasts. The linear response of the AB and BL sensors
to contrast is apparent at contrasts less than 30%, after which
the AB curve saturates. Despite the weaker response of the BL
sensor in the null direction relative to the preferred direction
[also visible in the raw data of Fig. 4(b)], its response is mono-
tonic in contrast at contrasts greater than about 15%. At high
contrasts, both the AB and BL sensors show a response slightly
less than their maximum due to light-induced leakage. The HR
sensor’s theoretically predicted square-law response to contrast
is masked by the effects of light-induced leakage (see Discus-
sion), reaching a maximum difference between preferred and
null mean outputs at 20% contrast, after which the preferred di-
rection response increasingly approaches zero. At low contrasts,
all sensors were able to discriminate leftward from rightward
motion at contrasts less than 5%.

It is often true that the characterization with sinusoidal stimuli
of an analog VLSI motion sensor (which in truth is not a linear
system, even in the mean, given photoreceptor adaptation, light-
induced leakage, and circuit nonidealities) is not predictive of
its performance in real-world scenarios. In order to demonstrate
the extreme sensitivity of the present motion sensors to real-

world motion, the BL sensor was presented with a real-world
stimulus with medium contrast and complex spectral content: a
hand was waved back and forth over the sensor, resulting in the
trace shown in Fig. 8.

Finally, power consumption was measured for each chip
during operation. Biases were optimized for performance,
not for power consumption, and especially in the case of the
BL sensor bias currents could be reduced significantly at the
cost of performance. In all cases, due to the design of the
analog circuits utilized, there was no measurable dependence
of power consumption upon normal visual stimulation. Power
consumption figures, along with other metrics of each sensor,
are summarized in Table I.

V. DISCUSSION

We have presented analog VLSI implementations of the three
most prominent spatio-temporal frequency tuned visual motion
algorithms. Each algorithm shows a linear or sublinear response
to increasing contrast, is able to discriminate the direction of
motion at less than 5% contrast, and can be tuned for optimal
response down to temporal frequencies less than 1 Hz.
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Fig. 8. Raw output of the BL sensor to the motion of a hand in its visual field. The hand was waved back and forth three times, at first slowly and then faster. It is
possible not only to easily discriminate the direction of motion of the hand, but also to see the two edges of each of the four fingers in the response of the sensor,
which is tuned to low frequencies and thus responds less as the hand moves faster.

Although the three algorithms are quite mathematically
similar, the implementations differ greatly. The AB sensor, with
the highest transistor count by far, also consumes the smallest
amount of power because most of the circuitry simply controls
the pathway of current flow from earlier stages and requires no
bias currents. In terms of raw response characteristics (Fig. 4),
the best overall performance is seen from the BL sensor. This
sensor achives a large separation between mean responses to
preferred and null direction stimuli, and a minimal response
to orthogonal stimuli, by operating its photoreceptor above
threshold and thus allowing better transistor matching. This
performance comes at the cost of power consumption, which is
26 times greater than the AB sensor. The HR sensor, with the
lowest transistor count and power consumption only three times
that of the AB sensor, suffers from a light-induced leakage
current problem which limits its useful operating regime to low
mean light intensities.

Since any drain/source region exposed to light in the focal
plane becomes a vertical photodiode, light-induced “leakage”
currents are an issue to be dealt with at the layout stage in all
focal plane vision processors. Typically, the area intended to
act as a photodiode is exposed, while all other drain/source re-
gions are “covered” with one or more metal layers. Since such
thin metal layers can be translucent, this leakage is virtually al-
ways present in such sensors, so the problem is not so much
light-induced leakage per se, but rather an imbalance of light
leakage leading to undesired circuit operation. The HR sensor,
which was actually fabricated as part of a tracking experiment
[49], suffers a loss of directional selectivity at high light inten-
sity levels due to an imbalance of light leakage between the two
Gilbert multipliers in each pixel caused by exposed structures.
This leakage is seen strongly in the output of the Gilbert multi-
plier in the negative pathway of the HR output. The HR sensor
was thus characterized at the lowest possible mean light inten-
sity. Despite the use of a low mean light intensity, as contrast
increases the highest absolute light level required to produce a
visual stimulus increases, and thus leakage imbalance effects
are still visible in the HR characterization results. The HR con-
trast curve [Fig. 7(c)] shows this effect most strongly. Due to the
fact that the leakage is more pronounced in one Gilbert multi-
plier output than the other, higher brightness levels cause sensor

output currents to become more negative regardless of stimulus
direction. Thus, the null direction (negative) response is appar-
ently strong, while the preferred direction (positive) response
approaches zero at medium contrasts. Also due to leakage ef-
fects, the optimal spatial frequency for the HR sensor [Fig. 5(c)]
is shifted from 0.25 down to 0.15 cycles per chip pixel. This
phenomenon is caused by the fact that higher spatial frequencies
lead to higher spatial gradients of local luminance. Since the two
Gilbert multipliers in each HR sensor are located side by side
along the preferred-null direction axis, this increases the instan-
taneous difference in illumination between the two Gilbert mul-
tipliers, worsening the leakage imbalance and leading to weaker
mean responses. This leakage could be reduced by devoting
slightly more layout area to allow better light shielding. In the
case of the HR sensor, rerouting a single wire in the second
metal layer would ameliorate the leakage problem while adding
only a few percent to the pixel area. The AB and BL designs
suffer much less from light leakage, but this effect can be seen
as a “droop” in the response of these chips at high contrast (see
Fig. 7).

The spatio-temporal frequency characteristic of each sensor,
shown in Fig. 5, can be compared with the theoretical predic-
tion of Fig. 9. While each sensor is clearly spatio-temporal fre-
quency tuned, the shapes of these tunings for the VLSI imple-
mentations are much more complex than predicted due to fre-
quency filtering from circuit components taken in the deriva-
tion to have wide frequency bandwidth. The tuning of the AB
sensor is most like its prediction, particularly in the sharp tran-
sition between positive and negative responses at low temporal
frequency relative to the transition at low spatial frequency. The
tuning of the BL sensor is much narrower in temporal frequency
than predicted, likely due to temporal frequency filtering by the
two operational transconductance ampliers (OTAs), operated in
subthreshold, which follow the explicit low-pass filters. The HR
sensor tuning is much affected by light-induced leakage, with its
optimal spatial frequency shifted down to 0.15 cycles per chip
pixel, and some overlap of negative responses into preferred-di-
rection stimuli.

Fig. 7(a) shows that the response of the AB sensor to in-
creasing contrast becomes sublinear at about 30% and is virtu-
ally constant from 50% to maximum. This contrast saturation
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Fig. 9. Theoretically predicted mean output of analog VLSI motion sensor implementations to variation of spatial and temporal frequency, normalized to a
maximum of unity. (a) AB. (b) BL. (c) HR. To match the optimal temporal frequency of the empirical spatio-temporal frequency data taken from the sensors, time
constants for both high-pass and low-pass filters have been chosen to be 180 ms. Brighter gray levels indicate stronger responses. Each point in the plot corresponds
to the theoretical mean sensor output to a moving sinusoidal grating with a particular combination of spatial and temporal frequency.

is due to saturation of the output current of the differential pairs
in the AB circuit pathway. This is a highly desirable property
for real-world motion sensors, allowing changes in contrast to
be ignored while remaining sensitive to changes in stimulus mo-
tion, and in fact is a well-known property of biological motion
sensors [50]. The BL sensor, due both to its lower photoreceptor
gain relative to the AB sensor and the intentional wide linear
range of its OTAs, does not exhibit contrast saturation. At con-
trasts less than 15%, the BL sensor’s mean response to null-di-
rection stimuli is slightly positive, likely due to mismatch in the
subthreshold OTAs used to compare filtered to unfiltered pho-
toreceptor signals. The HR sensor’s contrast response is masked
by light-induced leakage.

The AB pixel has the smallest pixel power consumption, at
1.04 per pixel; at this power consumption a 300 300
array would consume only a modest 93.6 mW. Despite the large
number of structures in the AB implementation, past the low-
pass filter stage all circuits simply perform current routing func-
tions and thus do not require bias currents. The HR implemen-
tation consumes somewhat more power due to the necessity of
Gilbert multipliers, which require their own bias currents, late
in the computation. The much larger power consumption of the

BL sensor is due to a large bias current in the photoreceptor cir-
cuit, which is necessary to raise the dc level of the photoreceptor
voltage signal high enough to maintain the bias transistor of the
N-type -C low-pass filter in saturation. If refabricated with
P-type low-pass filters, the photoreceptor bias current could be
greatly reduced. However, due to this large bias current, the BL
photoreceptor frequency bandwidth is very broad, leading to the
highly sensitive responses highlighted in Fig. 8.

The sensitivity of these sensors to low speed and contrast,
along with their minimal power consumption, make them ex-
cellent alternatives to a CCD/DSP combination in cases such as
that of small mobile robots where power consumption, size, and
weight are major design considerations.

APPENDIX

In this appendix, we present a detailed analysis of the theoret-
ical mean output of all three motion algorithms shown in Fig. 1,
particularly to account for the effect of the absolute-value non-
linearity used in the AB and BL sensors.

All three sensors in common compute their output from the
four signals shown in Fig. 1: , and . We analyze
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the output of each sensor in response to a sinusoidal grating
stimulus

(A.1)

where is the stimulus mean value (taken as for this deriva-
tion), is the Michelson contrast, is the temporal frequency,
and the spatial frequency. The two photoreceptor inputs
and to each motion detector can then be expressed as

(A.2)

(A.3)

where is the spatial phase factor (4).
The first step in each model passes each input signal through

a high-pass filter. We assume that the HPF completely removes
the sustained component of the signal. The effect of the linear
HPF on these sinusoids is simply to multiply the amplitude by
a frequency-dependent term and to add a phase .
Thus, the two signals after being high-pass filtered become

(A.4)

(A.5)

These two signals are then passed through a low-pass filter with
magnitude response and phase response to pro-
duce

(A.6)

(A.7)

The implementation of each algorithm uses a saturating circuit
(a differential pair alone, in an OTA, or in a Gilbert multiplier)
in further processing of these four signals. This effect could be
modeled by passing appropriate signals through a saturating hy-
perbolic tangent function

(A.8)

where is an empirical gain factor. However, the introduction
of the hyperbolic tangent term at this stage makes a compact
closed-form derivation impossible, so we omit it and carry on
the analysis for unsaturated signals in each algorithm.

I. ADELSON–BERGEN ALGORITHM

The AB output using the absolute value operation [Fig. 1(a)]
may be computed as

(A.9)

The sum of scaled and shifted sinusoids at the same frequency
is always still a sinusoid. By use of common trigonometric iden-
tities, the amplitude of the sinusoid inside each absolute value
operator can be evaluated. Then, using the empirical approxi-
mation

(A.10)

it is possible to compute the mean output of the AB algorithm
as

(A.11)

Owing to the use of the absolute value operation instead of the
square, this response is directly proportional to contrast rather
than the square of contrast [compare (A.15)]. The value of
(A.11) is shown as spatial and temporal frequency are varied in
Fig. 9(a). This sensor is tuned in spatial and temporal frequency,
but the shape of the tuning is slightly distorted relative to
[Fig. 9(c)].

II. BARLOW–LEVICK ALGORITHM

The BL output using the absolute value operation [Fig. 1(b)]
may be computed as

(A.12)

Using similar identities and approximations as for the AB algo-
rithm, the mean output of the BL algorithm can be shown to be

(A.13)

Again, owing to the use of the absolute value operation, this re-
sponse is directly proportional to contrast rather than the square
of contrast. The value of (A.13) is shown as spatial and tem-
poral frequency are varied in Fig. 9(b). Like the AB sensor, this
sensor is tuned in spatial and temporal frequency, but the shape
of the tuning is slightly distorted relative to [Fig. 9(c)].

III. HASSENSTEIN–REICHARDT ALGORITHM

The HR algorithm [Fig. 1(c)] is implemented in canonical
form. This sensor computes

(A.14)

the value of which can be directly derived from (A.4)–(A.7) by
the use of trigonometric identities to be

(A.15)

This response is independent of time, and proportional to the
square of contrast. The value of (A.15) is shown as spatial and
temporal frequency are varied in Fig. 9(c). This sensor is sepa-
rably tuned in spatial and temporal frequency.
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